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Abstract
In this paper we derive a formula for the rank of the self-commutator of
hyponormal block Toeplitz operators T� with matrix-valued rational symbols
� in L∞(Cn×n) via the classical Hermite-Fejér interpolation problem.

PACS numbers: 02.30.Sa, 02.30.Tb
Mathematics Subject Classification: 47B35, 47B20, 47A57, 46B70

1. Introduction

Block Toeplitz operators are of importance in connection with a variety of problems in the
field of quantum mechanics. Also, a study of spectral properties of hyponormal operators
has made important contributions in the study of related mathematical physics problem. The
hyponormality of block Toeplitz operators with rational symbols was considered in [HL]. This
paper is a continuation of [HL]: the rank formula for the self-commutators of hyponormal
block Toeplitz operators is derived here. The rank of the self-commutator plays an important
role in the model theory of hyponormal operators.

A bounded linear operator A on an infinite-dimensional complex Hilbert space H is said
to be hyponormal if its self-commutator [A∗, A] = A∗A−AA∗ is positive (semidefinite). For
ϕ in L∞(T) of the unit circle T = ∂D, the (single) Toeplitz operator with symbol ϕ is the
operator Tϕ on the Hardy space H 2(T) defined by

Tϕf = P(ϕf ) (f ∈ H 2(T)),

where P denotes the orthogonal projection that maps from L2(T) onto H 2(T).
For the matrix-valued function � ∈ L∞(Cn×n), the block Toeplitz operator with symbol

� is the operator T� on the vector-valued Hardy space H 2(Cn) of the unit disc defined by

T�h = Pn(�h) (h ∈ H 2(Cn)),
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where Pn denotes the orthogonal projection that maps L2(Cn) onto H 2(Cn). If we set
H 2(Cn) = H 2(T) ⊕ · · · ⊕ H 2(T) then we see that if

� =

⎡
⎢⎣

ϕ11 . . . ϕ1n

...

ϕn1 . . . ϕnn

⎤
⎥⎦

then

T� =

⎡
⎢⎣

Tϕ11 . . . Tϕ1n

...

Tϕn1 . . . Tϕnn

⎤
⎥⎦ .

The block Hankel operator with symbol � ∈ L∞(Cn×n) is the operator H� : H 2(Cn) →
H 2(Cn) defined by

H�h = Jn(I − Pn)(�h),

where Jn denotes the unitary operator from H 2(Cn)⊥ to H 2(Cn) given by Jn(z
−m) = zm−1

for m � 1. For � ∈ L∞(Cn×n) write �̃(z) := �∗(z). An inner matrix �(z) ∈ H 2(Cn×m) is
the one satisfying �(z)∗�(z) = Im for all z ∈ T, where Im the m × m identity matrix. The
following relations can easily be proved:

T ∗
� = T�∗ ,H ∗

� = H�̃ (� ∈ L∞(Cn×n)), (1.1)

T�� − T�T� = H ∗
�∗H� (�,� ∈ L∞(Cn×n)), (1.2)

H�T� = H��,H�� = T ∗
�̃
H� (� ∈ L∞(Cn×n),� ∈ H∞(Cn×n)), (1.3)

H ∗
�H� − H ∗

��H�� = H ∗
�H�∗H ∗

�∗H� (� ∈ L∞(Cn×n),� ∈ H∞(Cn×n)inner). (1.4)

The problem of determining which symbols induce hyponormal block Toeplitz operators
was solved in [GHR] by the aid of Cowen’s theorem [Co].

Theorem 1.1 [GHR]. For � ∈ L∞(Cn×n), T� is hyponormal if and only if � is normal and

E(�) := {K ∈ H∞(Cn×n) : ||K||∞ � 1 and � − K�∗ ∈ H∞(Cn×n)}
is nonempty.

For � ∈ L∞(Cn×n) write

�+ := P(�) ∈ H 2(Cn×n) and �− := [(I − P)(�)]∗ ∈ H 2(Cn×n),

where P denotes the orthogonal projection from L2(Cn×n) to H 2(Cn×n). Thus we can
write � = �∗

− + �+. For an inner matrix �, write H(�) = (�(z)H 2(Cn))⊥. For
F = [fij ] ∈ H∞(Cn×n), we say that F is called rational if each entry fij is a rational
function. Also if given � ∈ L∞(Cn×n),�+ and �− are rational then we say that the block
Toeplitz operator T� has a rational symbol �.

The case of arbitrary matrix symbol � ∈ L∞(Cn×n), though solved by theorem 1.1,
is in practice very difficult because the matrix multiplication is not commutative. In [HL],
it was shown that if � ∈ L∞(Cn×n) is a rational symbol then the hyponormality of the
block Toeplitz operator T� can be determined by the matrix-valued tangential Hermite-Fejér
interpolation problem. However this criterion does not give any information on the rank of
the self-commutator. In this paper we derive a formula on the rank of the self-commutator of
hyponormal block Toeplitz operators T� with matrix-valued rational symbols � in L∞(Cn×n)

via the classical Hermite-Fejér interpolation problem.
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2. The main result

In view of [HL, lemma 2.1], when we study hyponormal block Toeplitz operators with rational
symbols � we may assume that the symbol � ≡ �∗

− + �+ ∈ L∞(Cn×n) is of the form

�+ = [θ1θ0aij ] = �1(z)�0(z)A
∗(z) and �− = [θ1bij ] = �1(z)B

∗(z),

where �i = θiIn (i = 0, 1) and the θi are finite Blaschke products and A,B ∈ H∞(Cn×n).
Let θ be a finite Blaschke product of degree d:

θ = eiξ
N∏

i=1

(B̃i)
mi

(
B̃i := z − αi

1 − αiz

)
, (2.1)

where d = ∑N
i=1 mi . For our purpose rewrite θ as in the form

θ = eiξ
d∏

j=1

Bj , (2.2)

where

Bj := B̃k if
k−1∑
l=0

ml < j �
k∑

l=0

ml

and, for notational convenience, m0 := 0. Let

φj := qj

1 − αjz
Bj−1Bj−2 · · · B1 (1 � j � d), (2.3)

where φ1 := q1(1−α1z)
−1 and qj := (1−|αj |2) 1

2 (1 � j � d). It is well known that {φj }dj=1
is an orthonormal basis for H(θ).

For our purpose we concentrate on the data given by sequences of n×n complex matrices.
Given the sequence {Kij : 1 � i � N, 0 � j < mi} of n × n complex matrices and a set of
distinct complex numbers α1, . . . , αN in D, the classical Hermite-Fejér interpolation problem
is to find necessary and sufficient conditions for the existence of a contractive analytic function
K in H∞(Cn×n) satisfying

K(j)(αi)

j !
= Ki,j (1 � i � N, 0 � j < mi). (2.4)

To construct a polynomial K(z) ≡ P(z) satisfying (2.4), let pi(z) be the polynomial of order
d − mi defined by

pi(z) :=
N∏

k=1,k �=i

(
z − αk

αi − αk

)mk

.

Consider the polynomial P(z) of degree d − 1 defined by

P(z) :=
N∑

i=1

(
K ′

i,0 + K ′
i,1(z − αi) + K ′

i,2(z − αi)
2 + · · · + K ′

i,mi−1(z − αi)
mi−1

)
pi(z), (2.5)

where the K ′
i,j are obtained by the following equations:

K ′
i,j = Ki,j −

j−1∑
k=0

K ′
i,kp

(j−k)

i (αi)

(j − k)!
(1 � i � N; 0 � j < mi)

and K ′
i,0 = Ki,0 (1 � i � N). Then P(z) satisfies (2.4).

3
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On the other hand, if F is a matrix-valued function in H∞(Cn×n), let A(F ) be the operator
on H(θIn) defined dy

A(F ) := PH(θIn)MF |H(θIn),

where MF is the multiplication operator with symbol F. Now let W be the unitary operator
from

⊕d
1 C

n onto H(θIn) defined by

W := (φ1In, φ2In, . . . , φdIn),

where φj are the functions in (2.3). Let M be the matrix on C
d corresponding to the finite

Blaschke product θ of order d written in the form (2.2):

M :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 0 0 0 · · · 0
q1q2 α2 0 0 · · · 0

−q1α1q3 q2q3 α3 0 · · · 0
q1α2α3q4 −q2α3q4 q3q4 α4 · · · 0

−q1α2α3α4q5 q2α3α4q5 −q3α4q5 q4q5
. . . 0

...
...

...
. . .

. . . 0

(−1)dq1
(∏d−1

j=2 αj

)
qd (−1)d−1q2

(∏d−1
j=3 αj

)
qd · · · · · · qd−1qd qd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.6)

If L is a matrix on C
n and M = [mi,j ]d×d , then the matrix L ⊗ M is the matrix on C

n×d

defined by the block matrix

L ⊗ M :=

⎡
⎢⎢⎢⎣

Lm1,1 Lm1,2 · · · Lm1,d

Lm2,1 Lm2,2 · · · Lm2,d

...
...

...
...

Lmd,1 Lmd,2 · · · Lmd,d

⎤
⎥⎥⎥⎦ .

Now let P(z) ∈ L∞(Cn×n) be the polynomial defined by equation (2.5). The matrix P(M)

on C
n×d is defined by

P(M) :=
d−1∑
i=0

Pi ⊗ Mi where P(z) =
d−1∑
i=0

Piz
i .

Then P(M) is called the Hermite-Fejér matrix determined by (2.4). It is well known ([FF],
theorem 5.6) that

W ∗A(P )W = P(M), (2.7)

which says that P(M) is a matrix representation for A(P ).
Our main result now follows.

Theorem 2.1. Let � ≡ �∗
− + �+ ∈ L∞(Cn×n) be a normal rational symbol, with

�+ = [θ1θ0aij ] = �1(z)�0(z)A
∗(z) and �− = [θ1bij ] = �1(z)B

∗(z),

where �i = θiIn (i = 0, 1) and θi are finite Blaschke products. If T� is hyponormal then the
rank of the self-commutator [T ∗

�, T�] is computed from the formula

rank[T ∗
�, T�] = rank

(
A(A)∗W

(
IH(�1�0) − P(M)∗P(M)

)
W ∗A(A)

)
. (2.8)

Hence, in particular, if A(α) is invertible for each zero α of θ1θ0 then

rank[T ∗
�, T�] = rank

(
IH(�1�0) − P(M)∗P(M)

)
. (2.9)
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Proof. Suppose that T� is hyponormal. Without loss of generality we may assume that

θ1θ0 =
N∏

i=1

(
z − αi

1 − αiz

)pi

and θ1 =
N1∏
i=1

(
z − αi

1 − αiz

)pi

,

where d1 = ∑N1
i=1 pi and d2 = ∑N

i=N1+1 pi . By theorem 1.1, there exists a matrix-valued
function K(z) in H∞(Cn×n) such that

� − K�∗ ∈ H∞(Cn×n),

or equivalently,

�0(z)B(z) − K(z)A(z) ∈ �(z)H 2(Cn×n) (� := �1�0). (2.10)

Note that (2.10) holds if and only if the following equations hold: for each i = 1, . . . , N ,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bi,0

Bi,1

Bi,2

...

Bi,mi−2

Bi,mi−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ki,0 0 0 0 · · · 0
Ki,1 Ki,0 0 0 · · · 0
Ki,2 Ki,1 Ki,0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

Ki,mi−2 Ki,mi−3
. . .

. . . Ki,0 0
Ki,mi−1 Ki,mi−2 . . . Ki,2 Ki,1 Ki,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai,0

Ai,1

Ai,2

...

Ai,mi−2

Ai,mi−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.11)

where

Ki,j := K(j)(αi)

j !
, Ai,j := A(j)(αi)

j !
and Bi,j := (θ0B)(j)(αi)

j !
.

Thus K is a function in H∞(Cn×n) for which

K(j)(αi)

j !
= Ki,j (1 � i � N, 0 � j < mi), (2.12)

where Ki,j are determined by equation (2.11).
On the other hand, since �∗� − ��∗ = 0, we have

[T ∗
�, T�] = H ∗

�∗
+
H�∗

+
− H ∗

�∗−H�∗− + T�∗�−��∗ = H ∗
A�∗

0�
∗
1
HA�∗

0�
∗
1
− H ∗

B�∗
1
HB�∗

1
.

Observe that

cl ran(H ∗
A�∗

0�
∗
1
HA�∗

0�
∗
1
) = cl ranH ∗

A�∗
0�

∗
1
⊆ (�1(z)�0(z)H

2(Cn))⊥ = H(�1�0) = H(�)

and

cl ran(H ∗
B�∗

1
HB�∗

1
) ⊆ (�1(z)H

2(Cn))⊥ = H(�1),

which implies that ran[T ∗
�, T�] ⊆ H(�). Thus we can see that H(�) is a reducing subspace

of [T ∗
�, T�]. Let U and V be in H(�). Suppose P ≡ K is a polynomial satisfying (2.12).

Since kerH�∗ = �H 2(Cn), we know that H�∗P U = H�∗(PH(�)(PU)). Since H ∗
�∗H�∗ is the

projection onto H(�), it follows that

〈H ∗
�∗P H�∗P U, V 〉 = 〈H�∗P U,H�∗P V 〉 = 〈PH(�)PU, PH(�)PV 〉 = 〈A(P )U,A(P )V 〉.

Thus by (2.7) we have that

H ∗
�∗P H�∗P |H(�) = A(P )∗A(P ) = WP(M)∗P(M)W ∗,

which implies

(H ∗
�∗H�∗ − H ∗

�∗P H�∗P )|H(θ) = W(IH(�) − P(M)∗P(M))W ∗.

5
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Since P satisfies equality (2.11) and hence �∗
− − P�∗

+ ∈ H∞(Cn×n), it follows that

[T ∗
�, T�]|H(�) = (

H ∗
�∗

+
H�∗

+
− H ∗

�∗−H�∗−

)∣∣
H(�)

= T ∗
A

(
H ∗

�∗H�∗ − H ∗
�∗P H�∗P

)
TA

∣∣
H(�)

= A(A)∗W(IH(�) − P(M)∗P(M))W ∗A(A),

which proves (2.8). On the other hand, suppose A(α) is invertible for all zeros α of
θ1θ0. If A(A)F = 0 for some F ∈ H(�) then PH(�)(AF) = 0 and hence AF ∈ �H 2.
Therefore F(α) = 0 for all zeros α of �. It thus follows that F ∈ �H 2 and hence
F ∈ �H 2 ∩ H(�) = {0}. Thus A(A) is injective. Since A(A) is a finite-dimensional
operator (because θ is a finite Blaschke product), we have that A(A) is invertible. Therefore
we get (2.9). �

We conclude with a revealing example.

Example 2.2. Let b(z) := z− 1
2

1− 1
2 z

and let

T� ≡
[

T ∗
b T ∗

zb + T2zb

T ∗
zb + T2zb T ∗

b

]
.

Observe that

�(z) :=
[

b(z) zb(z) + 2zb(z)

zb(z) + 2zb(z) b(z)

]
∈ L∞(C2×2).

Using the notation in the preceding argument we write

�+(z) = zb(z)

[
0 2
2 0

]∗
and �−(z) = zb(z)

[
z 1
1 z

]∗
.

Thus we can write

�(z) = zb(z)I2, A(z) =
[

0 2
2 0

]
, B(z) =

[
z 1
1 z

]
,

so that

φ1(z) = 1, φ2(z) =
√

3

2
× z

1 − 1
2z

and M = 1

2

[
0 0√
3 1

]
.

Since

K1,0 = 1

2

[
1 0
0 1

]
and K2,0 = 1

4

[
2 1
1 2

]
,

it follows that

P(z) = K1,0′p1(z) + K2,0′p2(z)

= 1

2

[
1 0
0 1

]
(−2z + 1) +

1

4

[
2 1
1 2

]
(2z)

= 1

2

[
1 0
0 1

]
+

1

2

[
0 1
1 0

]
z.

Therefore the Hermite-Fejér matrix P(M) is given by

P(M) = 1

2

[
1 0
0 1

]⊗ [
1 0
0 1

]
+

1

2

[
0 1
1 0

] ⊗ 1

2

[
0 0√
3 1

]

= 1

4

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0

√
3 2 1√

3 0 1 2

⎤
⎥⎥⎦ .

6
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Hence a straightforward calculation shows that

I − P(M)∗P(M) = 1

16

⎡
⎢⎢⎢⎣

9 0 −√
3 −2

√
3

0 9 −2
√

3 −√
3

−√
3 −2

√
3 11 −4

−2
√

3 −√
3 −4 11

⎤
⎥⎥⎥⎦

and hence

rank[T ∗
�, T�] = rank(I − P(M)∗P(M)) = 4.
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