Block Toeplitz operators with rational symbols (II)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41385206
(http://iopscience.iop.org/1751-8121/41/38/385206)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.150
The article was downloaded on 03/06/2010 at 07:12

Please note that terms and conditions apply.

Block Toeplitz operators with rational symbols (II)

In Sung Hwang ${ }^{1}$ and Woo Young Lee ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
${ }^{2}$ Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail: ishwang@skku.edu and wylee@math.snu.ac.kr

Received 15 May 2008, in final form 29 July 2008
Published 28 August 2008
Online at stacks.iop.org/JPhysA/41/385206

Abstract

In this paper we derive a formula for the rank of the self-commutator of hyponormal block Toeplitz operators T_{Φ} with matrix-valued rational symbols Φ in $L^{\infty}\left(\mathbb{C}^{n \times n}\right)$ via the classical Hermite-Fejér interpolation problem.

PACS numbers: $02.30 . \mathrm{Sa}, 02.30 . \mathrm{Tb}$
Mathematics Subject Classification: 47B35, 47B20, 47A57, 46B70

1. Introduction

Block Toeplitz operators are of importance in connection with a variety of problems in the field of quantum mechanics. Also, a study of spectral properties of hyponormal operators has made important contributions in the study of related mathematical physics problem. The hyponormality of block Toeplitz operators with rational symbols was considered in [HL]. This paper is a continuation of [HL]: the rank formula for the self-commutators of hyponormal block Toeplitz operators is derived here. The rank of the self-commutator plays an important role in the model theory of hyponormal operators.

A bounded linear operator A on an infinite-dimensional complex Hilbert space \mathcal{H} is said to be hyponormal if its self-commutator $\left[A^{*}, A\right]=A^{*} A-A A^{*}$ is positive (semidefinite). For φ in $L^{\infty}(\mathbb{T})$ of the unit circle $\mathbb{T}=\partial \mathbb{D}$, the (single) Toeplitz operator with symbol φ is the operator T_{φ} on the Hardy space $H^{2}(\mathbb{T})$ defined by

$$
T_{\varphi} f=P(\varphi f) \quad\left(f \in H^{2}(\mathbb{T})\right)
$$

where P denotes the orthogonal projection that maps from $L^{2}(\mathbb{T})$ onto $H^{2}(\mathbb{T})$.
For the matrix-valued function $\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$, the block Toeplitz operator with symbol Φ is the operator T_{Φ} on the vector-valued Hardy space $H^{2}\left(\mathbb{C}^{n}\right)$ of the unit disc defined by

$$
T_{\Phi} h=P_{n}(\Phi h) \quad\left(h \in H^{2}\left(\mathbb{C}^{n}\right)\right)
$$

where P_{n} denotes the orthogonal projection that maps $L^{2}\left(\mathbb{C}^{n}\right)$ onto $H^{2}\left(\mathbb{C}^{n}\right)$. If we set $H^{2}\left(\mathbb{C}^{n}\right)=H^{2}(\mathbb{T}) \oplus \cdots \oplus H^{2}(\mathbb{T})$ then we see that if

$$
\Phi=\left[\begin{array}{ccc}
\varphi_{11} & \ldots & \varphi_{1 n} \\
& \vdots & \\
\varphi_{n 1} & \ldots & \varphi_{n n}
\end{array}\right]
$$

then

$$
T_{\Phi}=\left[\begin{array}{ccc}
T_{\varphi_{11}} & \ldots & T_{\varphi_{1 n}} \\
& \vdots & \\
T_{\varphi_{n 1}} & \ldots & T_{\varphi_{n n}}
\end{array}\right]
$$

The block Hankel operator with symbol $\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$ is the operator $H_{\Phi}: H^{2}\left(\mathbb{C}^{n}\right) \rightarrow$ $H^{2}\left(\mathbb{C}^{n}\right)$ defined by

$$
H_{\Phi} h=J_{n}\left(I-P_{n}\right)(\Phi h)
$$

where J_{n} denotes the unitary operator from $H^{2}\left(\mathbb{C}^{n}\right)^{\perp}$ to $H^{2}\left(\mathbb{C}^{n}\right)$ given by $J_{n}\left(z^{-m}\right)=z^{m-1}$ for $m \geqslant 1$. For $\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$ write $\widetilde{\Phi}(z):=\Phi^{*}(\bar{z})$. An inner matrix $\Theta(z) \in H^{2}\left(\mathbb{C}^{n \times m}\right)$ is the one satisfying $\Theta(z)^{*} \Theta(z)=I_{m}$ for all $z \in \mathbb{T}$, where I_{m} the $m \times m$ identity matrix. The following relations can easily be proved:

$$
\begin{align*}
& T_{\Phi}^{*}=T_{\Phi^{*}}, H_{\Phi}^{*}=H_{\widetilde{\Phi}} \quad\left(\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)\right) \tag{1.1}\\
& T_{\Phi \Psi}-T_{\Phi} T_{\Psi}=H_{\Phi^{*}}^{*} H_{\Psi} \quad\left(\Phi, \Psi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)\right), \tag{1.2}\\
& H_{\Phi} T_{\Psi}=H_{\Phi \Psi}, H_{\Psi \Phi}=T_{\widetilde{\Psi}}^{*} H_{\Phi} \quad\left(\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right), \Psi \in H^{\infty}\left(\mathbb{C}^{n \times n}\right)\right) \tag{1.3}\\
& H_{\Phi}^{*} H_{\Phi}-H_{\Theta \Phi}^{*} H_{\Theta \Phi}=H_{\Phi}^{*} H_{\Theta^{*}} H_{\Theta^{*}}^{*} H_{\Phi} \quad\left(\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right), \Theta \in H^{\infty}\left(\mathbb{C}^{n \times n}\right) \text { inner }\right) \tag{1.4}
\end{align*}
$$

The problem of determining which symbols induce hyponormal block Toeplitz operators was solved in [GHR] by the aid of Cowen's theorem [Co].

Theorem 1.1 [GHR]. For $\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$, T_{Φ} is hyponormal if and only if Φ is normal and

$$
\mathcal{E}(\Phi):=\left\{K \in H^{\infty}\left(\mathbb{C}^{n \times n}\right):\|K\|_{\infty} \leqslant 1 \text { and } \Phi-K \Phi^{*} \in H^{\infty}\left(\mathbb{C}^{n \times n}\right)\right\}
$$

is nonempty.
For $\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$ write
$\Phi_{+}:=P(\Phi) \in H^{2}\left(\mathbb{C}^{n \times n}\right) \quad$ and $\quad \Phi_{-}:=[(I-P)(\Phi)]^{*} \in H^{2}\left(\mathbb{C}^{n \times n}\right)$,
where P denotes the orthogonal projection from $L^{2}\left(\mathbb{C}^{n \times n}\right)$ to $H^{2}\left(\mathbb{C}^{n \times n}\right)$. Thus we can write $\Phi=\Phi_{-}^{*}+\Phi_{+}$. For an inner matrix Θ, write $\mathcal{H}(\Theta)=\left(\Theta(z) H^{2}\left(\mathbb{C}^{n}\right)\right)^{\perp}$. For $F=\left[f_{i j}\right] \in H^{\infty}\left(\mathbb{C}^{n \times n}\right)$, we say that F is called rational if each entry $f_{i j}$ is a rational function. Also if given $\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right), \Phi_{+}$and Φ_{-}are rational then we say that the block Toeplitz operator T_{Φ} has a rational symbol Φ.

The case of arbitrary matrix symbol $\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$, though solved by theorem 1.1, is in practice very difficult because the matrix multiplication is not commutative. In [HL], it was shown that if $\Phi \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$ is a rational symbol then the hyponormality of the block Toeplitz operator T_{Φ} can be determined by the matrix-valued tangential Hermite-Fejér interpolation problem. However this criterion does not give any information on the rank of the self-commutator. In this paper we derive a formula on the rank of the self-commutator of hyponormal block Toeplitz operators T_{Φ} with matrix-valued rational symbols Φ in $L^{\infty}\left(\mathbb{C}^{n \times n}\right)$ via the classical Hermite-Fejér interpolation problem.

2. The main result

In view of [HL, lemma 2.1], when we study hyponormal block Toeplitz operators with rational symbols Φ we may assume that the symbol $\Phi \equiv \Phi_{-}^{*}+\Phi_{+} \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$ is of the form
$\Phi_{+}=\left[\theta_{1} \theta_{0} \overline{a_{i j}}\right]=\Theta_{1}(z) \Theta_{0}(z) A^{*}(z) \quad$ and $\quad \Phi_{-}=\left[\theta_{1} \overline{b_{i j}}\right]=\Theta_{1}(z) B^{*}(z)$,
where $\Theta_{i}=\theta_{i} I_{n}(i=0,1)$ and the θ_{i} are finite Blaschke products and $A, B \in H^{\infty}\left(\mathbb{C}^{n \times n}\right)$.
Let θ be a finite Blaschke product of degree d :

$$
\begin{equation*}
\theta=\mathrm{e}^{\mathrm{i} \xi} \prod_{i=1}^{N}\left(\widetilde{B}_{i}\right)^{m_{i}} \quad\left(\widetilde{B}_{i}:=\frac{z-\alpha_{i}}{1-\overline{\alpha_{i}} z}\right), \tag{2.1}
\end{equation*}
$$

where $d=\sum_{i=1}^{N} m_{i}$. For our purpose rewrite θ as in the form

$$
\begin{equation*}
\theta=\mathrm{e}^{\mathrm{i} \xi} \prod_{j=1}^{d} B_{j} \tag{2.2}
\end{equation*}
$$

where

$$
B_{j}:=\widetilde{B_{k}} \quad \text { if } \quad \sum_{l=0}^{k-1} m_{l}<j \leqslant \sum_{l=0}^{k} m_{l}
$$

and, for notational convenience, $m_{0}:=0$. Let

$$
\begin{equation*}
\phi_{j}:=\frac{q_{j}}{1-\overline{\alpha_{j} z}} B_{j-1} B_{j-2} \cdots B_{1} \quad(1 \leqslant j \leqslant d) \tag{2.3}
\end{equation*}
$$

where $\phi_{1}:=q_{1}\left(1-\overline{\alpha_{1}} z\right)^{-1}$ and $q_{j}:=\left(1-\left|\alpha_{j}\right|^{2}\right)^{\frac{1}{2}}(1 \leqslant j \leqslant d)$. It is well known that $\left\{\phi_{j}\right\}_{j=1}^{d}$ is an orthonormal basis for $\mathcal{H}(\theta)$.

For our purpose we concentrate on the data given by sequences of $n \times n$ complex matrices. Given the sequence $\left\{K_{i j}: 1 \leqslant i \leqslant N, 0 \leqslant j<m_{i}\right\}$ of $n \times n$ complex matrices and a set of distinct complex numbers $\alpha_{1}, \ldots, \alpha_{N}$ in \mathbb{D}, the classical Hermite-Fejér interpolation problem is to find necessary and sufficient conditions for the existence of a contractive analytic function K in $H^{\infty}\left(\mathbb{C}^{n \times n}\right)$ satisfying

$$
\begin{equation*}
\frac{K^{(j)}\left(\alpha_{i}\right)}{j!}=K_{i, j} \quad\left(1 \leqslant i \leqslant N, 0 \leqslant j<m_{i}\right) \tag{2.4}
\end{equation*}
$$

To construct a polynomial $K(z) \equiv P(z)$ satisfying (2.4), let $p_{i}(z)$ be the polynomial of order $d-m_{i}$ defined by

$$
p_{i}(z):=\prod_{k=1, k \neq i}^{N}\left(\frac{z-\alpha_{k}}{\alpha_{i}-\alpha_{k}}\right)^{m_{k}}
$$

Consider the polynomial $P(z)$ of degree $d-1$ defined by
$P(z):=\sum_{i=1}^{N}\left(K_{i, 0}^{\prime}+K_{i, 1}^{\prime}\left(z-\alpha_{i}\right)+K_{i, 2}^{\prime}\left(z-\alpha_{i}\right)^{2}+\cdots+K_{i, m_{i}-1}^{\prime}\left(z-\alpha_{i}\right)^{m_{i}-1}\right) p_{i}(z)$,
where the $K_{i, j}^{\prime}$ are obtained by the following equations:

$$
K_{i, j}^{\prime}=K_{i, j}-\sum_{k=0}^{j-1} \frac{K_{i, k}^{\prime} p_{i}^{(j-k)}\left(\alpha_{i}\right)}{(j-k)!}\left(1 \leqslant i \leqslant N ; 0 \leqslant j<m_{i}\right)
$$

and $K_{i, 0}^{\prime}=K_{i, 0}(1 \leqslant i \leqslant N)$. Then $P(z)$ satisfies (2.4).

On the other hand, if F is a matrix-valued function in $H^{\infty}\left(\mathbb{C}^{n \times n}\right)$, let $\mathfrak{A}(F)$ be the operator on $\mathcal{H}\left(\theta I_{n}\right)$ defined dy

$$
\mathfrak{A}(F):=\left.P_{\mathcal{H}\left(\theta I_{n}\right)} M_{F}\right|_{\mathcal{H}\left(\theta I_{n}\right)},
$$

where M_{F} is the multiplication operator with symbol F. Now let W be the unitary operator from $\bigoplus_{1}^{d} \mathbb{C}^{n}$ onto $\mathcal{H}\left(\theta I_{n}\right)$ defined by

$$
W:=\left(\phi_{1} I_{n}, \phi_{2} I_{n}, \ldots, \phi_{d} I_{n}\right),
$$

where ϕ_{j} are the functions in (2.3). Let M be the matrix on \mathbb{C}^{d} corresponding to the finite Blaschke product θ of order d written in the form (2.2):

$$
M:=\left[\begin{array}{cccccc}
\alpha_{1} & 0 & 0 & 0 & \cdots & 0 \tag{2.6}\\
q_{1} q_{2} & \alpha_{2} & 0 & 0 & \cdots & 0 \\
-q_{1} \overline{\alpha_{1}} q_{3} & q_{2} q_{3} & \alpha_{3} & 0 & \cdots & 0 \\
q_{1} \overline{\alpha_{2} \alpha_{3}} q_{4} & -q_{2} \overline{\alpha_{3}} q_{4} & q_{3} q_{4} & \alpha_{4} & \cdots & 0 \\
-q_{1} \overline{\alpha_{2} \alpha_{3} \alpha_{4}} q_{5} & q_{2} \overline{\alpha_{3} \alpha_{4}} q_{5} & -q_{3} \overline{\alpha_{4}} q_{5} & q_{4} q_{5} & \ddots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & 0 \\
(-1)^{d} q_{1}\left(\prod_{j=2}^{d-1} \overline{\alpha_{j}}\right) q_{d} & (-1)^{d-1} q_{2}\left(\prod_{j=3}^{d-1} \overline{\alpha_{j}}\right) q_{d} & \cdots & \cdots & q_{d-1} q_{d} & q_{d}
\end{array}\right] .
$$

If L is a matrix on \mathbb{C}^{n} and $M=\left[m_{i, j}\right]_{d \times d}$, then the matrix $L \otimes M$ is the matrix on $\mathbb{C}^{n \times d}$ defined by the block matrix

$$
L \otimes M:=\left[\begin{array}{cccc}
L m_{1,1} & L m_{1,2} & \cdots & L m_{1, d} \\
L m_{2,1} & L m_{2,2} & \cdots & L m_{2, d} \\
\vdots & \vdots & \vdots & \vdots \\
L m_{d, 1} & L m_{d, 2} & \cdots & L m_{d, d}
\end{array}\right]
$$

Now let $P(z) \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$ be the polynomial defined by equation (2.5). The matrix $P(M)$ on $\mathbb{C}^{n \times d}$ is defined by

$$
P(M):=\sum_{i=0}^{d-1} P_{i} \otimes M^{i} \quad \text { where } \quad P(z)=\sum_{i=0}^{d-1} P_{i} z^{i}
$$

Then $P(M)$ is called the Hermite-Fejér matrix determined by (2.4). It is well known ([FF], theorem 5.6) that

$$
\begin{equation*}
W^{*} \mathfrak{A}(P) W=P(M) \tag{2.7}
\end{equation*}
$$

which says that $P(M)$ is a matrix representation for $\mathfrak{A}(P)$.
Our main result now follows.
Theorem 2.1. Let $\Phi \equiv \Phi_{-}^{*}+\Phi_{+} \in L^{\infty}\left(\mathbb{C}^{n \times n}\right)$ be a normal rational symbol, with $\Phi_{+}=\left[\theta_{1} \theta_{0} \overline{a_{i j}}\right]=\Theta_{1}(z) \Theta_{0}(z) A^{*}(z) \quad$ and $\quad \Phi_{-}=\left[\theta_{1} \overline{b_{i j}}\right]=\Theta_{1}(z) B^{*}(z)$,
where $\Theta_{i}=\theta_{i} I_{n}(i=0,1)$ and θ_{i} are finite Blaschke products. If T_{Φ} is hyponormal then the rank of the self-commutator $\left[T_{\Phi}^{*}, T_{\Phi}\right]$ is computed from the formula

$$
\begin{equation*}
\operatorname{rank}\left[T_{\Phi}^{*}, T_{\Phi}\right]=\operatorname{rank}\left(\mathfrak{A}(A)^{*} W\left(I_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)}-P(M)^{*} P(M)\right) W^{*} \mathfrak{A}(A)\right) \tag{2.8}
\end{equation*}
$$

Hence, in particular, if $A(\alpha)$ is invertible for each zero α of $\theta_{1} \theta_{0}$ then

$$
\begin{equation*}
\operatorname{rank}\left[T_{\Phi}^{*}, T_{\Phi}\right]=\operatorname{rank}\left(I_{\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)}-P(M)^{*} P(M)\right) \tag{2.9}
\end{equation*}
$$

Proof. Suppose that T_{Φ} is hyponormal. Without loss of generality we may assume that

$$
\theta_{1} \theta_{0}=\prod_{i=1}^{N}\left(\frac{z-\alpha_{i}}{1-\overline{\alpha_{i}} z}\right)^{p_{i}} \quad \text { and } \quad \theta_{1}=\prod_{i=1}^{N_{1}}\left(\frac{z-\alpha_{i}}{1-\overline{\alpha_{i}} z}\right)^{p_{i}}
$$

where $d_{1}=\sum_{i=1}^{N_{1}} p_{i}$ and $d_{2}=\sum_{i=N_{1}+1}^{N} p_{i}$. By theorem 1.1, there exists a matrix-valued function $K(z)$ in $H^{\infty}\left(\mathbb{C}^{n \times n}\right)$ such that

$$
\Phi-K \Phi^{*} \in H^{\infty}\left(\mathbb{C}^{n \times n}\right)
$$

or equivalently,

$$
\begin{equation*}
\Theta_{0}(z) B(z)-K(z) A(z) \in \Theta(z) H^{2}\left(\mathbb{C}^{n \times n}\right) \quad\left(\Theta:=\Theta_{1} \Theta_{0}\right) . \tag{2.10}
\end{equation*}
$$

Note that (2.10) holds if and only if the following equations hold: for each $i=1, \ldots, N$,

$$
\left[\begin{array}{c}
B_{i, 0} \tag{2.11}\\
B_{i, 1} \\
B_{i, 2} \\
\vdots \\
B_{i, m_{i}-2} \\
B_{i, m_{i}-1}
\end{array}\right]=\left[\begin{array}{cccccc}
K_{i, 0} & 0 & 0 & 0 & \cdots & 0 \\
K_{i, 1} & K_{i, 0} & 0 & 0 & \cdots & 0 \\
K_{i, 2} & K_{i, 1} & K_{i, 0} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
K_{i, m_{i}-2} & K_{i, m_{i}-3} & \ddots & \ddots & K_{i, 0} & 0 \\
K_{i, m_{i}-1} & K_{i, m_{i}-2} & \ldots & K_{i, 2} & K_{i, 1} & K_{i, 0}
\end{array}\right]\left[\begin{array}{c}
A_{i, 0} \\
A_{i, 1} \\
A_{i, 2} \\
\vdots \\
A_{i, m_{i}-2} \\
A_{i, m_{i}-1}
\end{array}\right]
$$

where
$K_{i, j}:=\frac{K^{(j)}\left(\alpha_{i}\right)}{j!}, \quad A_{i, j}:=\frac{A^{(j)}\left(\alpha_{i}\right)}{j!} \quad$ and $\quad B_{i, j}:=\frac{\left(\theta_{0} B\right)^{(j)}\left(\alpha_{i}\right)}{j!}$.
Thus K is a function in $H^{\infty}\left(\mathbb{C}^{n \times n}\right)$ for which

$$
\begin{equation*}
\frac{K^{(j)}\left(\alpha_{i}\right)}{j!}=K_{i, j} \quad\left(1 \leqslant i \leqslant N, 0 \leqslant j<m_{i}\right) \tag{2.12}
\end{equation*}
$$

where $K_{i, j}$ are determined by equation (2.11).
On the other hand, since $\Phi^{*} \Phi-\Phi \Phi^{*}=0$, we have
$\left[T_{\Phi}^{*}, T_{\Phi}\right]=H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}-H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}}+T_{\Phi^{*} \Phi-\Phi \Phi^{*}}=H_{A \Theta_{0}^{*} \Theta_{1}^{*}}^{*} H_{A \Theta_{0}^{*} \Theta_{1}^{*}}-H_{B \Theta_{1}^{*}}^{*} H_{B \Theta_{1}^{*}}$.
Observe that
$\operatorname{cl~ran}\left(H_{A \Theta_{0}^{*} \Theta_{1}^{*}}^{*} H_{A \Theta_{0}^{*} \Theta_{1}^{*}}\right)=\operatorname{cl} \operatorname{ran} H_{A \Theta_{0}^{*} \Theta_{1}^{*}}^{*} \subseteq\left(\Theta_{1}(z) \Theta_{0}(z) H^{2}\left(\mathbb{C}^{n}\right)\right)^{\perp}=\mathcal{H}\left(\Theta_{1} \Theta_{0}\right)=\mathcal{H}(\Theta)$
and

$$
\operatorname{cl} \operatorname{ran}\left(H_{B \Theta_{1}^{*}}^{*} H_{B \Theta_{1}^{*}}\right) \subseteq\left(\Theta_{1}(z) H^{2}\left(\mathbb{C}^{n}\right)\right)^{\perp}=\mathcal{H}\left(\Theta_{1}\right)
$$

which implies that $\operatorname{ran}\left[T_{\Phi}^{*}, T_{\Phi}\right] \subseteq \mathcal{H}(\Theta)$. Thus we can see that $\mathcal{H}(\Theta)$ is a reducing subspace of $\left[T_{\Phi}^{*}, T_{\Phi}\right]$. Let U and V be in $\mathcal{H}(\Theta)$. Suppose $P \equiv K$ is a polynomial satisfying (2.12). Since $\operatorname{ker} H_{\Theta^{*}}=\Theta H^{2}\left(\mathbb{C}^{n}\right)$, we know that $H_{\Theta^{*} P} U=H_{\Theta^{*}}\left(P_{\mathcal{H}(\Theta)}(P U)\right)$. Since $H_{\Theta^{*}}^{*} H_{\Theta^{*}}$ is the projection onto $\mathcal{H}(\Theta)$, it follows that
$\left\langle H_{\Theta^{*} P}^{*} H_{\Theta^{*} P} U, V\right\rangle=\left\langle H_{\Theta^{*} P} U, H_{\Theta^{*} P} V\right\rangle=\left\langle P_{\mathcal{H}(\Theta)} P U, P_{\mathcal{H}(\Theta)} P V\right\rangle=\langle\mathfrak{A}(P) U, \mathfrak{A}(P) V\rangle$.
Thus by (2.7) we have that

$$
\left.H_{\Theta^{*} P}^{*} H_{\Theta^{*} P}\right|_{\mathcal{H}(\Theta)}=\mathfrak{A}(P)^{*} \mathfrak{A}(P)=W P(M)^{*} P(M) W^{*},
$$

which implies

$$
\left.\left(H_{\Theta^{*}}^{*} H_{\Theta^{*}}-H_{\Theta^{*} P}^{*} H_{\Theta^{*} P}\right)\right|_{\mathcal{H}(\theta)}=W\left(I_{\mathcal{H}(\Theta)}-P(M)^{*} P(M)\right) W^{*} .
$$

Since P satisfies equality (2.11) and hence $\Phi_{-}^{*}-P \Phi_{+}^{*} \in H^{\infty}\left(\mathbb{C}^{n \times n}\right)$, it follows that

$$
\begin{aligned}
{\left.\left[T_{\Phi}^{*}, T_{\Phi}\right]\right|_{\mathcal{H}(\Theta)} } & =\left.\left(H_{\Phi_{+}^{*}}^{*} H_{\Phi_{+}^{*}}-H_{\Phi_{-}^{*}}^{*} H_{\Phi_{-}^{*}}\right)\right|_{\mathcal{H}(\Theta)}=\left.T_{A}^{*}\left(H_{\Theta^{*}}^{*} H_{\Theta^{*}}-H_{\Theta^{*} P}^{*} H_{\Theta^{*} P}\right) T_{A}\right|_{\mathcal{H}(\Theta)} \\
& =\mathfrak{A}(A)^{*} W\left(I_{\mathcal{H}(\Theta)}-P(M)^{*} P(M)\right) W^{*} \mathfrak{A}(A),
\end{aligned}
$$

which proves (2.8). On the other hand, suppose $A(\alpha)$ is invertible for all zeros α of $\theta_{1} \theta_{0}$. If $\mathfrak{A}(A) F=0$ for some $F \in \mathcal{H}(\Theta)$ then $P_{\mathcal{H}(\Theta)}(A F)=0$ and hence $A F \in \Theta H^{2}$. Therefore $F(\alpha)=0$ for all zeros α of Θ. It thus follows that $F \in \Theta H^{2}$ and hence $F \in \Theta H^{2} \cap \mathcal{H}(\Theta)=\{0\}$. Thus $\mathfrak{A}(A)$ is injective. Since $\mathfrak{A}(A)$ is a finite-dimensional operator (because θ is a finite Blaschke product), we have that $\mathfrak{A}(A)$ is invertible. Therefore we get (2.9).

We conclude with a revealing example.
Example 2.2. Let $b(z):=\frac{z-\frac{1}{2}}{1-\frac{1}{2} z}$ and let

$$
T_{\Phi} \equiv\left[\begin{array}{cc}
T_{b}^{*} & T_{z b}^{*}+T_{2 z b} \\
T_{z b}^{*}+T_{2 z b} & T_{b}^{*}
\end{array}\right] .
$$

Observe that

$$
\Phi(z):=\left[\begin{array}{cc}
\overline{b(z)} & \overline{z b(z)}+2 z b(z) \\
\overline{z b(z)}+2 z b(z) & \overline{b(z)}
\end{array}\right] \in L^{\infty}\left(\mathbb{C}^{2 \times 2}\right) .
$$

Using the notation in the preceding argument we write

$$
\Phi_{+}(z)=z b(z)\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]^{*} \quad \text { and } \quad \Phi_{-}(z)=z b(z)\left[\begin{array}{cc}
z & 1 \\
1 & z
\end{array}\right]^{*}
$$

Thus we can write

$$
\Theta(z)=z b(z) I_{2}, \quad A(z)=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right], \quad B(z)=\left[\begin{array}{cc}
z & 1 \\
1 & z
\end{array}\right],
$$

so that
$\phi_{1}(z)=1, \quad \phi_{2}(z)=\frac{\sqrt{3}}{2} \times \frac{z}{1-\frac{1}{2} z} \quad$ and $\quad M=\frac{1}{2}\left[\begin{array}{cc}0 & 0 \\ \sqrt{3} & 1\end{array}\right]$.
Since

$$
K_{1,0}=\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad K_{2,0}=\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right],
$$

it follows that

$$
\begin{aligned}
P(z) & =K_{1,0^{\prime}} p_{1}(z)+K_{2,0^{\prime}} p_{2}(z) \\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right](-2 z+1)+\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right](2 z) \\
& =\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] z .
\end{aligned}
$$

Therefore the Hermite-Fejér matrix $P(M)$ is given by

$$
\begin{aligned}
P(M) & =\frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \bigotimes\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \bigotimes \frac{1}{2}\left[\begin{array}{cc}
0 & 0 \\
\sqrt{3} & 1
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & \sqrt{3} & 2 & 1 \\
\sqrt{3} & 0 & 1 & 2
\end{array}\right] .
\end{aligned}
$$

Hence a straightforward calculation shows that

$$
I-P(M)^{*} P(M)=\frac{1}{16}\left[\begin{array}{cccc}
9 & 0 & -\sqrt{3} & -2 \sqrt{3} \\
0 & 9 & -2 \sqrt{3} & -\sqrt{3} \\
-\sqrt{3} & -2 \sqrt{3} & 11 & -4 \\
-2 \sqrt{3} & -\sqrt{3} & -4 & 11
\end{array}\right]
$$

and hence

$$
\operatorname{rank}\left[T_{\Phi}^{*}, T_{\Phi}\right]=\operatorname{rank}\left(I-P(M)^{*} P(M)\right)=4
$$

Acknowledgments

The first-named author was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-313-C00039). The second-named author was supported by a grant (KRF-0409-20080061) from the Korea Research Foundation.

References

[Co] Cowen C 1988 Hyponormality of Toeplitz operators Proc. Am. Math. Soc. 103 809-12
[FF] Foias C and Frazo A 1993 The commutant lifting approach to interpolation problems Operator Theory: Adv. Appl. vol 44 (Boston, MA: Birkhäuser)
[GHR] Gu C, Hendricks J and Rutherford D 2006 Hyponormality of block Toeplitz operators Pac. J. Math. 223 95-111
[HL] Hwang I S and Lee W Y 2008 Block Toeplitz operators with rational symbols J. Phys. A: Math. Theor. 41 521-7

